臨床におけるガイドライン活用の現状

（公財）大原記念倉敷中央医療機構
倉敷中央病院
救命救急センター・総合診療科・人材開発センター
福岡 敏雄
倉敷中央病院の背景と歴史

巨大急性期民間病院
公益財団法人（2013年）
当院の診療圏

内 倉敷市人口 48万人（2014年）
倉敷中央病院の概要

- 病床数：1,161床（一般1,151床、第2種感染症10床）
- 平均外来患者数 2,796人／日
- 平均入院患者数 1,105人／日（平均在院日数12.2日）
- 新規入院患者数 29,897人
- 救急センター受入患者数 64,523人／年
- 救急車受入数 9,229台／年（ドクターカー搬送含む）
- 手術件数 12,164件 分娩数 1,188件
- 職員：（2014年4月）
  - 医師数 464人 看護職員 1,322人 薬剤師 89人
  - （研修医：56人 後期研修医：約130人）
2013年度 患者調査
病院別DPC出現数

上位12病院

倉敷中央病院

全て、大学病院本院
ながれ

・医療判断の要素
・医療情報の階層構造
・現場から医療情報を見る
  ✓ RCTとシステマティックレビュー
  ✓ 削除されるべきRCT
  ✓ ガイドラインでの「強い推奨」の改訂
  ✓ 全ての結果を足してよいか
・ガイドラインを現場の判断に活用する
臨床判断の枠組み

臨床経験
技術・腕前

患者・家族の願い・価値観
社会的規範・法

研究からの根拠・推論

利用可能な資金・器材・人員
臨床判断の4要素

• 根拠: 最も妥当な、結果の明白な、状況に当てはまる
• 価値観: 患者の価値観・好み、社会の価値観・価値基準
• 経験: 医療者側の専門職としての経験・技能
• 資源: 利用可能な資金・人材・設備など
根拠のギャップ
これを埋めることが強調されてきた

研究からの根拠
臨床での判断
6Sモデル: それぞれの例

6Sモデル：特徴と傾向

情報は統合化され、一般化される

個々の情報源の背景・質・定量的結果まで詳細な情報が得られる
ガイドラインの要素

臨床経験
技術・腕前

患者・家族の願い・価値観
社会的規範・法

研究からの根拠・推論

利用可能な資金・器材・人員
ガイドラインの要素

研究からの根拠・推論

臨床で確かめられた根拠の収集
妥当性の高い情報の集大成
バイアスリスクの評価と結果の統合
多くのオプションについて検討
ガイドラインの要素

臨床経験
技術・腕前

臨床の専門家の経験
患者の価値観の代弁
あらゆるオプションの想定
判断に重要な因子の検討
平均的技術・期待される技術の見積もり
ガイドラインの要素

患者・家族の願い・価値観
社会的規範・法

患者・社会の価値観

ガイドライン設定段階での患者・住民参加

ガイドラインの共有・患者版の作成
個別の判断での反映・変更の余地
社会からガイドラインへのフィードバック
ガイドラインの要素

あらゆる状況・現場の想定
- ガイドラインの試行と手直し
- ガイドラインの共有
- 現場の事情の反映とその余地
- 現場からガイドラインへのフィードバック

利用可能な資金・器材・人員
ガイドラインの要素

臨床経験
技術・腕前

患者・家族の願い・価値観
社会的規範・法

研究からの根拠・推論

利用可能な資金・器材・人員
現場から医療情報を見る

• RCTとシステマティックレビュー
  ✓人工呼吸中の鎮静薬中断
• 削除されるべきRCT
  ✓周術期βブロッカー投与
• ガイドラインでの「強い推奨」の改訂
  ✓ACC/AHAガイドライン調査
• 全ての結果を足してよいか
  ✓失敗したSSIバンドル
人工呼吸中の鎮静中断は有効？

  ✓人工呼吸管理日数: 通常管理群 7.3日、鎮静中断群 4.9日 p=0.004
  ✓抜管成功率のリスク比は、中断群で1.9倍（95％信頼区間CI 1.3-2.7）

  ✓人工呼吸管理日数: 通常管理群も鎮静中断群も、いずれもメジアンは7日 p=0.42
  ✓抜管成功のハザード比は、中断群で1.08倍（95％CI 0.86-1.35）
人工呼吸管理の経過 Kressら
NEJM 2000; 342: 1471-7

Figure 1. Kaplan–Meier Analysis of the Duration of Mechanical Ventilation, According to Study Group. After adjustment for base-line variables (age, sex, weight, APACHE II score, and type of respiratory failure), mechanical ventilation was discontinued earlier in the intervention group than in the control group [relative risk of extubation, 1.9; 95 percent confidence interval, 1.3 to 2.7; P<0.001].
人工呼吸管理の経過 Mehtaら
JAMA 2012; 308: 1985-92

Figure 2. Kaplan-Meier Curves for Time to Successful Extubation

P value calculated from log-rank statistic.
Daily sedation interruption versus no daily sedation interruption for critically ill adult patients requiring invasive mechanical ventilation (Review)

Burry L, Rose L, McCullagh IJ, Fergusson DA, Ferguson ND, Mehta S

人工呼吸期間
CDSR 2014 issue 7, CD 00917

Analysis 1.2. Comparison 1 Total duration of mechanical ventilation, Outcome 2 Duration of mechanical ventilation by use of a protocol.

Review: Daily sedation interruption versus no daily sedation interruption for critically ill adult patients requiring invasive mechanical ventilation

Comparison: 1 Total duration of mechanical ventilation

Outcome: 2 Duration of mechanical ventilation by use of a protocol

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>DSIT</th>
<th>Non DSIT</th>
<th>Mean (SD)</th>
<th>Log (days)</th>
<th>Mean Difference</th>
<th>Weight</th>
<th>IV(Random,95% CI)</th>
<th>IV(Random,95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Wit 2008</td>
<td>36</td>
<td>38</td>
<td>1.01 (1.32)</td>
<td>0.97 (0.71)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mehta 2008</td>
<td>32</td>
<td>33</td>
<td>2.13 (0.83)</td>
<td>2.07 (1.24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mehta 2012</td>
<td>214</td>
<td>209</td>
<td>2.25 (0.8)</td>
<td>2.38 (0.83)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nassar 2012</td>
<td>30</td>
<td>30</td>
<td>1.14 (0.81)</td>
<td>0.87 (0.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yilmaz 2010</td>
<td>25</td>
<td>25</td>
<td>1.67 (0.69)</td>
<td>2.08 (0.58)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>337</td>
<td>335</td>
<td></td>
<td></td>
<td>50.7 % -0.07 [-0.28, 0.13]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.02; CH² = 6.96, df = 4 (P = 0.14); I² = 43%
Test for overall effect: Z = 0.71 (P = 0.48)

2 Usual care (no sedation protocol)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>DSIT</th>
<th>Non DSIT</th>
<th>Mean (SD)</th>
<th>Log (days)</th>
<th>Mean Difference</th>
<th>Weight</th>
<th>IV(Random,95% CI)</th>
<th>IV(Random,95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anıfartı 2009</td>
<td>49</td>
<td>48</td>
<td>2.13 (0.8)</td>
<td>1.97 (0.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girard 2008</td>
<td>167</td>
<td>168</td>
<td>1.62 (0.82)</td>
<td>1.92 (0.78)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kress 2000</td>
<td>68</td>
<td>60</td>
<td>1.58 (0.72)</td>
<td>2.07 (0.67)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weinstock 2011</td>
<td>26</td>
<td>24</td>
<td>2.01 (0.78)</td>
<td>2.09 (0.91)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>310</td>
<td>300</td>
<td></td>
<td></td>
<td>49.3 % -0.21 [-0.47, 0.04]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.05; CH² = 1.05, df = 3 (P = 0.02); I² = 70%
Test for overall effect: Z = 1.62 (P = 0.10)

Total (95% CI)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>DSIT</th>
<th>Non DSIT</th>
<th>Mean (SD)</th>
<th>Log (days)</th>
<th>Mean Difference</th>
<th>Weight</th>
<th>IV(Random,95% CI)</th>
<th>IV(Random,95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>647</td>
<td></td>
<td></td>
<td></td>
<td>100.0 % -0.14 [-0.30, 0.02]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.03; CH² = 20.53, df = 8 (P = 0.01); I² = 61%
Test for overall effect: Z = 1.75 (P = 0.080)
Test for subgroup differences: CH² = 0.69, df = 1 (P = 0.41), I² = 0.0%

鎮静管理法がプロトコール化されていたかどうかでグループ分けした
このレビューのまとめ

• システマティックレビューの結果からは、鎮静中断が人工呼吸期間を短縮するという根拠は得られなかった

• 鎮静管理がプロトコール化されていれば、鎮静中断にこだわらなくてもよいのかもしれない
追加スライド：
国内のガイドライン
VAPバンドル ICU学会

• 手指衛生を確実に実施する
• 人工呼吸器回路を頻回に交換しない
• 適切な鎮静・鎮痛をはかる。特に過鎮静を避ける
• 人工呼吸器からの離脱ができるかどうか毎日評価する
• 人工呼吸中の患者を仰臥位で管理しない

☑人工呼吸関連肺炎予防バンドル 2010改訂版
  • 日本集中治療医学会 ICU機能評価委員会
  • http://www.jsicm.org/pdf/2010VAP.pdf
人工呼吸中の鎮静ガイドライン

• 「鎮静の必要性や鎮静状況を適切に評価することにより、人工呼吸器装着日数やICU在室期間、入院期間の短縮が得られ、気管切開の頻度も減少する。また、1日のうちに一時的に持続鎮静を中断し患者を覚醒させ鎮静の必要性を再評価することによって、不要な鎮静を減らし、鎮静期間を短縮できるとの報告もあるように、人工呼吸中の患者の鎮静レベルを評価し必要な鎮静レベルを維持することが求められる。」

✓人工呼吸中の鎮静のためのガイドライン 第1章 4.
  • 日本呼吸療法医学会 2010年
  • http://square.umin.ac.jp/jrcm/contents/guide/page03.html
米国・欧州心臓学会の緊急声明

• 周術期管理のガイドラインの改訂作業を実施中である。中間段階としての改訂チームの立場は、非心臓手術患者に関するβブロッカー投与をルーチン化してはならず、個々の症例に慎重な判断に基づくものであるべきである (AHA newsroom Aug 6, 2013)。
背景

• オランダの「the Dutch Echocardiographic Cardiac Risk Evaluation Applying Stress Echocardiography（DECREASE）」研究チームの研究の不正・ずさんさ・虚偽が発覚した

Meta-analysis of nine secure randomised controlled trials showing a significant increase in mortality with perioperative β-blockade.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Beta-blocker</th>
<th>Control</th>
<th>Weight</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
<td>M-H, Random, 95% CI</td>
</tr>
<tr>
<td>Secure trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangano 1996</td>
<td>4</td>
<td>99</td>
<td>5</td>
<td>101</td>
<td>0.82 [0.23, 2.95]</td>
</tr>
<tr>
<td>Bayliff 1999</td>
<td>2</td>
<td>49</td>
<td>1</td>
<td>50</td>
<td>2.04 [0.19, 21.79]</td>
</tr>
<tr>
<td>POBBLE 2005</td>
<td>3</td>
<td>55</td>
<td>1</td>
<td>48</td>
<td>2.62 [0.28, 24.34]</td>
</tr>
<tr>
<td>MAVS 2006</td>
<td>0</td>
<td>246</td>
<td>4</td>
<td>250</td>
<td>0.11 [0.01, 2.09]</td>
</tr>
<tr>
<td>DIPOM 2006</td>
<td>20</td>
<td>462</td>
<td>15</td>
<td>459</td>
<td>1.32 [0.69, 2.55]</td>
</tr>
<tr>
<td>Neary 2006</td>
<td>3</td>
<td>18</td>
<td>5</td>
<td>20</td>
<td>0.67 [0.19, 2.40]</td>
</tr>
<tr>
<td>BBSA 2007</td>
<td>1</td>
<td>110</td>
<td>0</td>
<td>109</td>
<td>2.97 [0.12, 72.19]</td>
</tr>
<tr>
<td>POISE 2008</td>
<td>129</td>
<td>4174</td>
<td>97</td>
<td>4177</td>
<td>1.33 [1.03, 1.73]</td>
</tr>
<tr>
<td>YANG XY 2008</td>
<td>0</td>
<td>51</td>
<td>1</td>
<td>51</td>
<td>0.33 [0.01, 8.00]</td>
</tr>
<tr>
<td><strong>Subtotal (95% CI)</strong></td>
<td><strong>5264</strong></td>
<td><strong>5265</strong></td>
<td><strong>78.3%</strong></td>
<td><strong>1.27 [1.01, 1.60]</strong></td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>162</td>
<td></td>
<td>129</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.00; Chi² = 5.74, df = 8 (P = 0.68); I² = 0%
Test for overall effect: Z = 2.06 (P = 0.04)
Studies in the DECREASE family have been shown to have been composed of fictitious data, have fabricated endpoints, missing data and patient records and are now discredited.

Bouri S et al. Heart doi:10.1136/heartjnl-2013-304262
Difference in the estimate of effect size between secure and non-secure studies.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Beta-blocker Events</th>
<th>Total</th>
<th>Control Events</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure trials</td>
<td>5264</td>
<td>5265</td>
<td>78.3%</td>
<td></td>
<td>1.27   [1.01, 1.60]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-secure trials</td>
<td>592</td>
<td>586</td>
<td>21.7%</td>
<td></td>
<td>0.42   [0.15, 1.23]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for subgroup differences: Chi² = 3.91, df = 1 (P = 0.05), I² = 74.4%
ガイドラインの推奨の継続性

• ACC/AHAガイドラインでClass Iとされた推奨が、その後の改訂でどのように位置づけられたか

✓ Class Iの推奨のうち、20％は推奨度が下げられたか削除されていた
From: Durability of Class I American College of Cardiology/American Heart Association Clinical Practice Guideline Recommendations


Table 4. Durability Class I ACC/AHA Guideline Recommendations With Differing Levels of Underlying Scientific Evidence Among 448 Index Recommendations for Which Level-of-Evidence Data Were Availablea

<table>
<thead>
<tr>
<th>Status of recommendation in revised (current) guideline, No. (%)b</th>
<th>Level of Evidence A: Multiple Randomized Clinical Trials or Meta-analyses (n = 105)</th>
<th>Level of Evidence B: Single Randomized Trial or Nonrandomized Studies (n = 195)</th>
<th>Level of Evidence C: Consensus Opinion, Case Studies, or Standard of Care (n = 148)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retained</td>
<td>95 (90.5)</td>
<td>158 (81.0)</td>
<td>109 (73.7)</td>
</tr>
<tr>
<td>Downgraded or reversed</td>
<td>4 (3.8)</td>
<td>25 (12.8)</td>
<td>14 (9.5)</td>
</tr>
<tr>
<td>Omitted</td>
<td>6 (5.7)</td>
<td>12 (6.2)</td>
<td>25 (16.9)</td>
</tr>
</tbody>
</table>

a Level-of-evidence data were available for 448/619 (72.4%) index recommendations in our sample; no level-of-evidence data were provided for recommendations in the 1998 guideline on valvular heart disease or the 2002 guideline on perioperative evaluation and care.
b Exact P value equals .001 for difference in percentages retained, downgraded/reversed, and omitted across levels of evidence.

Figure Legend:

Durability Class I ACC/AHA Guideline Recommendations With Differing Levels of Underlying Scientific Evidence Among 448 Index Recommendations for Which Level-of-Evidence Data Were Availablea
全ての結果を足してよいか

- 手術部感染予防（SSI）に関する推奨を組み合わせて「SSIバンドル」を作成し、これの実践の効果を見るランダム化比較試験を行った
- 推奨の内容 結腸直腸手術患者に対して
  - 腸管洗浄の省略 周術期の酸素投与 術中の体温保持 術中の輸液の減量 創部保護材の使用
- 結果: 実践群 45% 通常群 24% P=0.003
  - 既知のSSI危険因子で補正してもリスク比は2.49倍
ガイドラインと個別の臨床判断

・ガイドラインの推奨と、その推奨の度合いをふまえて個々に判断を行う
  ✓ 個々の判断は、患者の状況や好み、価値観を十分ふまえる必要がある。
  ✓ 推奨が「弱い」ほど、さまざまな要因を勘案する余地がある。
  ✓ 強い推奨であっても、前提条件などに注意を払う
  ✓ 全ての推奨を実施することで、相加効果・相乗効果を期待するが、必ずしも「よい」効果ばかりではない
臨床判断の枠組み

臨床経験
技術・腕前

患者・家族の願い・価値観
社会的規範・法

研究からの根拠・推論

利用可能な資金・器材・人員

ガイドライン
組織文化について

<table>
<thead>
<tr>
<th>望ましい専門集団としての「文化」</th>
<th>その「文化」による強み</th>
</tr>
</thead>
<tbody>
<tr>
<td>医療従事者一人一人が、最新の医療に関する知識を手に入れている</td>
<td>その知識に基づいて適正に行われれば、医療行為は安全で有効になる</td>
</tr>
<tr>
<td>問題点、疑問苦悩・不快などについて話し合う点、直面したことができる</td>
<td>自分たちの行動・実力・状況について、あらゆる局面で気づき正すことができ、迅速に「学ぶ」ことができる</td>
</tr>
<tr>
<td>他の同僚や外部から公正に扱われていると感じている たとえば、不合理に責められることはない</td>
<td>一人一人が、患者の医療・ケアについて役割と責任を持って積極的に関わることができる</td>
</tr>
<tr>
<td>学ばなければならないと了解しているたとえ失敗からであってももっと学びたいと思える</td>
<td>日常的な診療を通じて自分を鍛える経験ある指導者からフィードバックを受け自分を鍛える</td>
</tr>
<tr>
<td>必要に応じて、自分たちだけでなく他の専門職も加わったチーム医療を行う</td>
<td>医療の目的・目標として、患者・住民の健康・幸福の維持に焦点が絞られる</td>
</tr>
<tr>
<td>自分たちがチェックされ評価されるのは、自分たちがさらに成長するためである</td>
<td>自分たちは最高のことをしたいと願い、それを認めてもらおうとする自らの仕事・役割・成長のためなら、多少時間をかけたり苦労することにやぶさかでない</td>
</tr>
</tbody>
</table>

Carroll JA, Quijada MA: Qual Saf Health Care 2004;13;ii16-21
追加スライド：
医療訴訟
医療過誤4900万円賠償命令 倉敷中央病院
に心臓治療で後遺症 地裁判決

2007年6月22日 読売新聞

・心臓機能が低下する「心房細動」になり、心臓に電気ショックを与える治療で脳に血栓が詰まって脳こうそくになり、機能障害が残ったとして、倉敷市の無職の男性（62）が、治療を行った倉敷中央病院（倉敷市）を相手取り、慰謝料など約6850万円の損害賠償を求めた訴訟の判決が21日、地裁であった。広永伸行裁判長は「医師に過失があり、病院は使用者責任に基づいて損害を賠償すべきだ」などとして、病院側に約4900万円の支払いを命じた。
医療過誤4900万円賠償命令 倉敷中央病院に心臓治療で後遺症 地裁判決

2007年6月22日 読売新聞

・ 広永裁判長は、治療の前後、医師が血栓をできにくくする薬を投与しなかったことに対して、日本循環器学会が定めた治療のガイドライン（指針）を正当な理由なしに守っておらず、過失があると認定。「出血の恐れがあり、別の薬を投与した」などという病院側の主張も退けた。判決について、同病院の内田璞（すなお）院長は「主張が認められず残念。判決文をよく読んで今後の対応を検討する」とのコメントを出した。
まとめ

• 医療判断の要素
  ✓ 根拠  価値観  経験  資源

• 医療情報の階層構造
  ✓ ガイドラインも医療情報（根拠）の一つ

• 現場から医療情報を見る
  ✓ 様々な問題が指摘されてきてた

• ガイドラインを現場の判断に活用する
  ✓ 臨床判断の枠組みを意識する
  ✓ 組織としての改善につなげる